

## FUZZY LOGIC SIMULATION USING SUGENO-STYLE FOR SCHOOL DIMMING LIGHTING SYSTEM

<sup>1</sup>Kevin S. Diocales, <sup>1</sup>Winreal D. Gulle, <sup>1</sup>Briandale L. Nuñez, <sup>1</sup>Calvin T. Parreño, <sup>2</sup>Rionel B. Caldo

<sup>1</sup>Electrical Engineering Department

<sup>2</sup>Electronics and Computer Engineering Department

Lyceum of the Philippines University-Laguna (LPU-L), Laguna, Philippines

### ABSTRACT

*This study involves the fuzzy logic concept for designing an automatic dimming system. The input parameters of the study will be the luminance of the environment and the room illumination needed for a specified area. The output of the system will be the variable lux, which will be compared from the given input. Input parameters will be categorized as VD (Very Dark), D (Dark), F (Fair), B (Bright), and VB (Very Bright). The output parameters, on the other hand, are to be classified as VL (Very Low), L (Low), M (Moderate), H (High) and VH (Very High). The luminance of the environment will be acquired by using a light sensing circuit. The standard of illumination will be based on IIEE standards. The study uses Sugeno-style of fuzzy inference system and triangular membership functions. The study is purely simulation using MATLAB Fuzzy Logic toolbox and Fuzzylite. The goals of the study are to describe the fuzziness of the dimming lighting system, to provide a fuzzy logic design, and to simulate and to compare the results using two simulations.*

**Keywords:** diming lighting system; fuzzy logic; Fuzzylite; Matlab Fuzzy Logic toolbox; Sugeno-style.

### INTRODUCTION

#### **Dimming Lighting System**

In previous years, men are satisfied with just manually operating lighting fixtures as "ON and OFF", but with the help of technology advancement it is now capable of dimming

itself by means of programming, sensors and automation. Automation has been achieved by various means including mechanical, hydraulic, pneumatic, electrical, electronic, and they are usually in combination used to simplify our day to day activity [1].

Dimming lighting systems are not used often due to its higher initial costs [2]. A dimming lighting system provides convenience to its user and efficiency to the system by giving the correct amount of light needed. It also provides energy management control which reduces the energy consumption. According to [3], an efficient lighting control can save as much as 50% on existing buildings and 35% on the construction. This leads to the study of the proponents to emphasize the advantage of having a dimming lighting system.

#### **Fuzzy Logic Algorithm**

In problems that we encounter in our daily life, most of time the solutions cannot be answered by just simply "yes" or "no". There are uncertainties that cannot be solved using direct formulation. This is meant to be solved by the Fuzzy logic. The concept of Fuzzy logic was introduced by Professor LoftiZadeh, a professor of University of California. Professor Zadeh explained that people need systems that

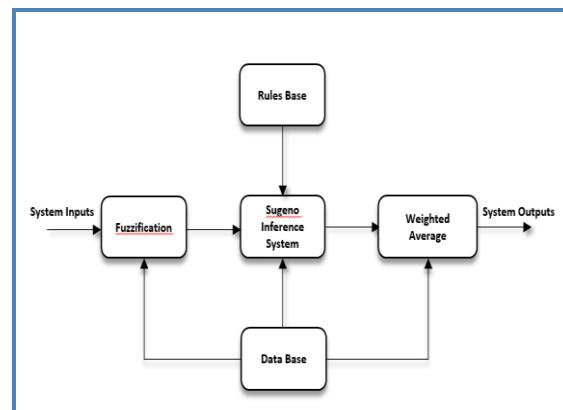
are capable of doing flexible control. He elaborated that if interference or noise can take part of membership degrees and utilized by the system, it will be more effective [4].

Fuzzy logic algorithms are used in many applications like dimming system, street light control, and in microcomputers [5] [6]. Fuzzy logic algorithm is easier to understand and calculates faster than the Proportional Integral Derivative (PID) systems [7]. In due course, the proponents decided to utilize fuzzy logic algorithm to design a dimming lighting system.

In this work, the procedure of lighting control system design was focused on fuzzy logic simulation where this process intended to have inputs to be fuzzified and defuzzified to produce crisp output. In this process, the last phase of Fuzzy Logic System operation is to defuzzify the fuzzy output sets by determining a value from membership function and compute for the crisp output using weighted average [7].

### **Objectives of the Study**

Generally, the proponents aim to design and simulate a dimming system using a fuzzy algorithm that is capable of controlling the luminance of lighting fixtures based on the amount light present in a given area. Specifically, this research endeavors to:


- Design a fuzzy logic algorithm, which can be used as a basis for an automatic dimming system;
- Present the fuzzy logic rules derivation for the dimming lighting system;

- Develop a model for the variable output lux using MATLAB toolbox and Fuzzylite; and,
- Verify the performance of the system using the abovementioned simulations.

## **METHODOLOGY**

### **Tools and Techniques**

In this study, the proponents will use the Sugeno style of fuzzy inference system (FIS) technique in developing the system. Compared to Mamdani type FIS, Sugeno FIS is more computationally efficient and appealing in control systems, which requires flexibility and optimization. Sugeno FIS simplifies the defuzzification process. It makes use of the averaging technique to produce the crisp output as shown in Figure 2.1. Mamdani FIS is mostly used in decision support applications while Sugeno FIS is preferred in system design [8].



**Figure 2.1 Fuzzy Logic Process**

Figure 2.1 shows the fuzzy logic process in producing the crisp output. At first, the process requires system inputs from the user which will

be fuzzified by the system to determine its linguistic classification. After the fuzzification process, the inputs will be evaluated using Sugeno FIS base on the given standards (Refer to Table 2.2). When the inputs are already evaluated, it will undergo defuzzification using weighted average to give the system outputs.

Based on Figure 2.1, the system inputs are needed for the system process. These are the following:

1. *Illuminance of the environment* – Environment light was considered for the reduction of light, which will be produced by the system. The measurement of environment light is important so that we can harvest and utilize daylight that is most of the time present in a classroom.
2. *Area illumination* – To give the correct amount of light produced by the system, it is essential to determine the amount of light present in the area.
3. *Recommended level of illumination* – The proponents will base their standards on *IIEE-ELI Manual of practice on efficient lighting* [9]. Diverse levels of illumination are required on different areas. The proponents subjected school areas for the research. The table shows the recommended illumination for the given areas.

**Table 2.1 Recommended Output lux for School Vicinities**

| Area                 | Recommended lux output |
|----------------------|------------------------|
| <b>Laboratories</b>  | 750 lux                |
| <b>Lecture Rooms</b> | 750 lux                |
| <b>Library</b>       | 750 lux                |
| <b>Drafting room</b> | 1600 lux               |
| <b>Gymnasium</b>     | 540 lux                |

In constructing the membership functions for the necessary input and output parameters, the proponents defined the linguistic classification of inputs based on the levels of brightness as shown in Table 2.2.

**Table 2.1 Levels of Input and Output Parameters**

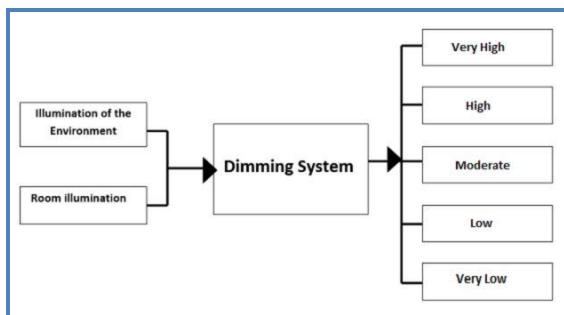
| INPUTS           |                                                                                                     |
|------------------|-----------------------------------------------------------------------------------------------------|
| CONDITIONS       | DESCRIPTION/DEFINITION                                                                              |
| Very Dark (VD)   | State of an area when it has the smallest amount or close to zero lux present (0 lux - 299 lux)     |
| Dark (D)         | State of an area when it has small amount of lux present, but not close to zero (300 lux - 699 lux) |
| Fair (F)         | State of an area when it has an enough lux present (700 lux - 800 lux)                              |
| Bright (B)       | State of an area when it has high amount of lux present (801 lux - 1500 lux)                        |
| Very Bright (VB) | State of an area when it has very high amount of lux present (1501 and above lux)                   |

| OUTPUTS        |                                                                     |
|----------------|---------------------------------------------------------------------|
| CONDITIONS     | DESCRIPTION/DEFINITION                                              |
| Very Low (VL)  | The system will give a very low amount of lux (200 lux - 399 lux)   |
| Low (L)        | The system will give a very low amount of lux (400 lux - 699 lux)   |
| Moderate (M)   | The system will give a moderate amount of lux (700 lux - 800 lux)   |
| High (H)       | The system will give a high amount of lux (801 lux - 1500 lux)      |
| Very High (VH) | The system will give a very high amount of lux (1501 and above lux) |

Fuzzy Associative Memory (FAM) matrix was used to create the rules for the system. FAM is a good method in storing and representing fuzzy rules [10]. The output values of the FAM matrix are determined based on the membership functions set by the proponents with respect to its x and y coordinates. Considering that we have two input parameters and we have five classifications (shown in the hierarchical structure depicted in Figure 2.2), we will have 25 possible combinations. The following are samples of output values of the

FAM matrix with respect to its input parameters.

If *Environment Illumination* is <very bright>  
and *Area Illumination* is <very bright>


**Then the output light will be<Very Low>**

If *Environment Illumination* is <very dark>  
and *Area Illumination* is <very dark>

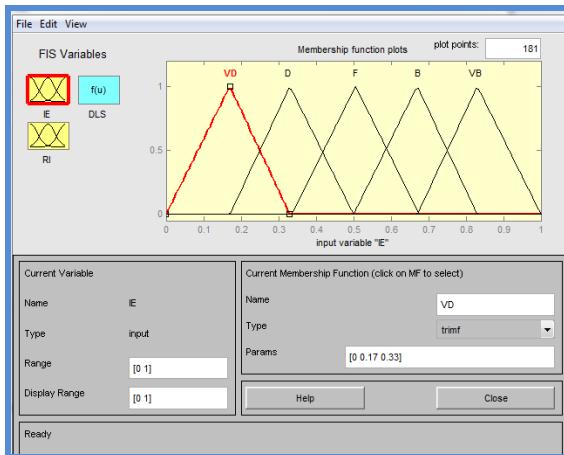
**Then the output light will be<Very High>**

If *Environment Illumination* is <fair> and  
*Area Illumination* is <bright>

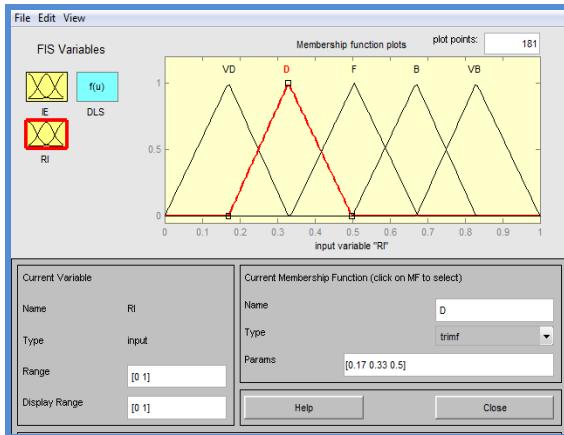
**Then the output light will be<Moderate>**



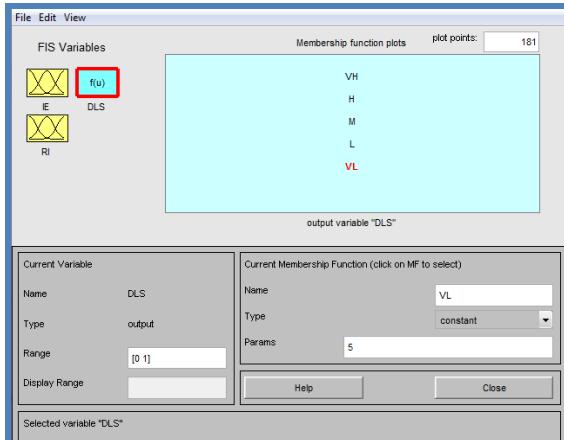
**Figure 2.2 Hierarchical Structure of Dimming Lighting System**


The Adaptive Neuro Fuzzy Inference System (ANFIS) approach was used to determine the fuzziness of the system. Since ANFIS is integrated in MATLAB, the proponents can easily do the simulation using the MATLAB fuzzy logic toolbox. To determine the viability of results, it will be compared with the data obtained using fuzzylite. Similar to commonly used Matlab Fuzzy Logic toolbox, fuzzylite is a fuzzy logic control library which can be used for fuzzy logic simulations [11]. Comparing the results of two different

simulators will ensure that the fuzzy system provides reliable results.

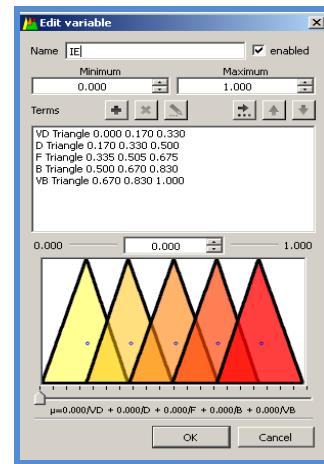

## RESEARCH DESIGN

### Fuzzy Inference System (FIS)

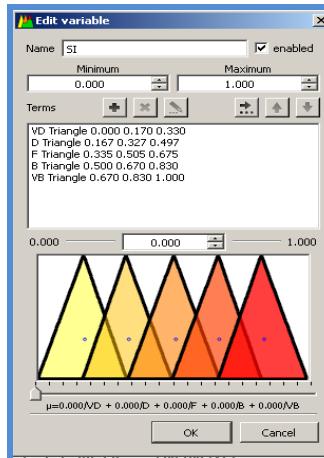

FIS activates the FAM rules in generating fuzzy output. It maps the given inputs to its corresponding crisp output using defuzzification process. This mapping provides basis for decision-making. The input(s) and output(s) are modeled as membership functions (MFs). The environmental light, which can be obtained and detected by light sensors, will be used as input variable  $x$  (i.e. Illumination of the Environment) and  $y$  (i.e. Room Illumination). **Figure 3.1** and **Figure 3.2** depicts the input variables using triangular functions. The output variable (see Figure 3.3) is the linguistic classification of illumination that is needed by the room to reach the illumination standard. The fuzzy set of the output variable is inferred by max-min composition where the VH is the maximum output of illumination and the VL is the minimum. The fuzzy relation describes the desired control action. The fuzzy set of the output variable is defuzzified to deliver a crisp numerical value by the centroid-of-area method [11]. The proponents used Fuzzy Logic Matlab Toolbox and Fuzzy Lite in simulating the system shown in figures 3.1 to 3.5.



**Figure 3.1: MF of Illumination of the Environment (IE)**




**Figure 3.2: MF of Room Illumination (RI)**




**Figure 3.3: MF of Output Variable (Crisp Outputs) for dimming reference**

Similar to Matlab Fuzzy Logic Toolbox, Fuzzy Lite was used for testing and comparison purposes. The input and output membership functions used in Matlab were also used in fuzzylite. Upon finishing the fuzzy model in fuzzylite, the proponents make use of the same inputs injected in Matlab, so as to check the reliability of the system. Refer to **Figure 3.4** and **Figure 3.5** for this illustration.



**Figure 3.4 FuzzyLite Illumination of Environment**



**Figure 3.5 FuzzyLite Room Illumination (RI)**

The proponents set the ranges of the output membership function (MF) in

determining the light intensity needed by the room (shown in **Table 3.2**).

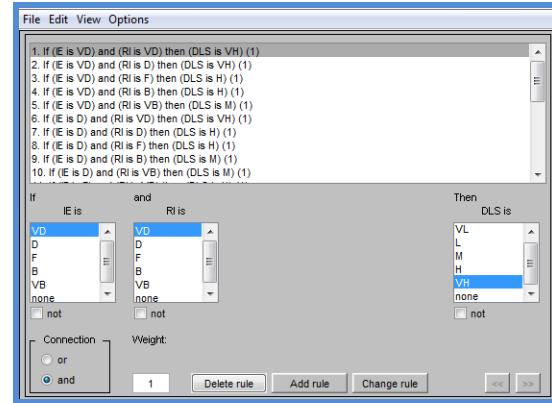
**Table 3.2 Linguistic Classification of Membership Functions**

| Linguistic Classification |              |
|---------------------------|--------------|
| Level                     | Range        |
| Very High                 | 4.41 to 5.00 |
| High                      | 3.91 to 4.40 |
| Moderate                  | 2.91 to 3.91 |
| Low                       | 1.91 to 2.90 |
| Very Low                  | 1.00 to 1.90 |

The fuzzy rule base consists of a collection of fuzzy IF-THEN rules. The proponents constructed rules stated as follows:

*Rule 1: IF x(IE is VD) and y(SI is VD) then z(DLS) = VH*

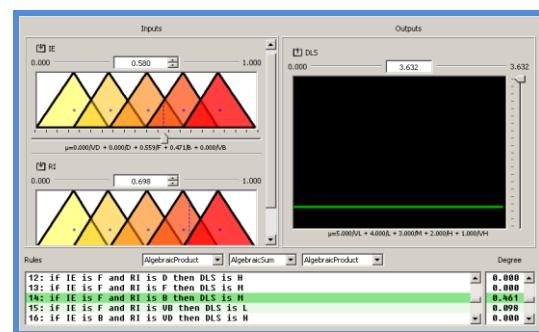
*Rule 2: IF x(IE is VD) and y(SI is D) then z(DLS) = VH*


*Rule 3: IF x(IE is VD) and y(SI is F) then z(DLS) = H*

*Rule 4: IF x(IE is VD) and y(SI is B) then z(DLS) = H*

*Rule 5: IF x(IE is VD) and y(SI is VB) then z(DLS) = M*

*Rule 6.....n*


These rules tabulated in FAM matrix were realized in Matlab using Rule Editor as shown in Figure 3.6.



**Figure 3.6 Matlab Fuzzy Logic Toolbox Ruling**



**Figure 3.7 Matlab Fuzzy Logic Toolbox Simulation**



**Figure 3.8 FuzzyLite Output Response and Linguistic Classification**

The simulation in **Figure 3.8** shows that the results obtained using fuzzylite is likely equal to the results obtained using Fuzzy Logic Toolbox. The output linguistic class of fuzzyLite is the same with Matlab Fuzzy Logic, they both give Moderate (M) classification. The actual inputs are 1218 and 1047 and their given normalized inputs are .58 and .698 for Illumination of Environment (IE) and Room Illumination (RI) respectively. The bit difference of the two is that the fuzzylite gives a membership degree that is not exactly the same as what was obtained using Matlab fuzzy logic. These are just some of the inputs used for testing. Refer to Section 4 for complete set of simulation results.

The proponents make use of the variables x, y, and z for input 1, input 2, and output respectively. Output is represented by Linguistic classification Very High (VH), High (H), Moderate (M), Low (L) and Very Low (VL). Consequent pair of Linguistic Classification stated by the rules is tabulated to be the truth table for outputs. For instance, IF x is VL (1) and y is VL (1) THEN z is VH (5) (see Table 3.6).

**Table 3.6: The Fuzzy Rules for the Dimming Lighting System**

| Count | Weights | Illumination of the Environment | Standard Room Illumination | Dimming Lighting System (Classified Value) | Dimming Lighting System (Linguistic Class) |
|-------|---------|---------------------------------|----------------------------|--------------------------------------------|--------------------------------------------|
| 0     | w1      | 5                               | 5                          | 5.00                                       | VL                                         |
| 1     | w2      | 5                               | 4                          | 4.50                                       | VL                                         |
| 2     | w3      | 5                               | 3                          | 4.00                                       | L                                          |
| 3     | w4      | 5                               | 2                          | 3.50                                       | M                                          |
| 4     | w5      | 5                               | 1                          | 3.00                                       | M                                          |
| 5     | w6      | 4                               | 5                          | 4.50                                       | VL                                         |
| 6     | w7      | 4                               | 4                          | 4.00                                       | L                                          |
| 7     | w8      | 4                               | 3                          | 3.50                                       | M                                          |
| 8     | w9      | 4                               | 2                          | 3.00                                       | M                                          |
| 9     | w10     | 4                               | 1                          | 2.50                                       | H                                          |
| 10    | w11     | 3                               | 5                          | 4.00                                       | L                                          |
| 11    | w12     | 3                               | 4                          | 3.50                                       | M                                          |
| 12    | w13     | 3                               | 3                          | 3.00                                       | M                                          |
| 13    | w14     | 3                               | 2                          | 2.50                                       | H                                          |
| 14    | w15     | 3                               | 1                          | 2.00                                       | H                                          |
| 15    | w16     | 2                               | 5                          | 3.50                                       | M                                          |
| 16    | w17     | 2                               | 4                          | 3.00                                       | M                                          |
| 17    | w18     | 2                               | 3                          | 2.50                                       | H                                          |
| 18    | w19     | 2                               | 2                          | 2.00                                       | H                                          |
| 19    | w20     | 2                               | 1                          | 1.50                                       | VH                                         |
| 20    | w21     | 1                               | 5                          | 3.00                                       | M                                          |
| 21    | w22     | 1                               | 4                          | 2.50                                       | H                                          |
| 22    | w23     | 1                               | 3                          | 2.00                                       | H                                          |
| 23    | w24     | 1                               | 2                          | 1.50                                       | VH                                         |
| 24    | w25     | 1                               | 1                          | 1.00                                       | VH                                         |

## EXPERIMENTS, COMPARISON AND ANALYSIS OF RESULTS

In this study, the proponents conducted two different fuzzy logic simulations using Matlab Fuzzy Logic Toolbox and FuzzyLite for the dimming lighting system. The proponents conducted 20 trials to check the reliability of the two applications and determine their crisp outputs as shown in **Table 4.1**.

**Table 4.1 Measure of Relationship between Matlab Fuzzy Logic ToolBox and FuzzyLite**

| Trials | Board Predictive Assessment Input Parameters | Input Values |            | Crisp Output (Matlab Fuzzy Logic Toolbox) | Crisp Output (Fuzzy Lite) | Linguistic Classification | True Error | % Relative Approximate Error |
|--------|----------------------------------------------|--------------|------------|-------------------------------------------|---------------------------|---------------------------|------------|------------------------------|
|        |                                              | Iux          | Normalized |                                           |                           |                           |            |                              |
| 1      | DLS                                          | IE           | 483        | 0.23                                      | 1.84                      | 1.842                     | Very High  | 0.002                        |
|        |                                              | RI           | 684        | 0.456                                     |                           |                           |            | 0.108577633                  |
| 2      | DLS                                          | IE           | 655.2      | 0.312                                     | 2.35                      | 2.355                     | High       | 0.005                        |
|        |                                              | RI           | 855        | 0.57                                      |                           |                           |            | 0.212314225                  |
| 3      | DLS                                          | IE           | 1218       | 0.58                                      | 3.63                      | 3.632                     | Moderate   | 0.002                        |
|        |                                              | RI           | 1047       | 0.698                                     |                           |                           |            | 0.055066079                  |
| 4      | DLS                                          | IE           | 882        | 0.42                                      | 3.39                      | 3.386                     | Moderate   | 0.004                        |
|        |                                              | RI           | 1185       | 0.79                                      |                           |                           |            | 0.118133491                  |
| 5      | DLS                                          | IE           | 1386       | 0.66                                      | 2.91                      | 2.914                     | Moderate   | 0.004                        |
|        |                                              | RI           | 990        | 0.33                                      |                           |                           |            | 0.13726836                   |
| 6      | DLS                                          | IE           | 1050       | 0.5                                       | 3                         | 3                         | Moderate   | 0                            |
|        |                                              | RI           | 930        | 0.62                                      |                           |                           |            | 0                            |
| 7      | DLS                                          | IE           | 924        | 0.44                                      | 1.8                       | 1.799                     | Very High  | 0.001                        |
|        |                                              | RI           | 361.5      | 0.24                                      |                           |                           |            | 0.055586437                  |
| 8      | DLS                                          | IE           | 525        | 0.25                                      | 2.75                      | 2.75                      | High       | 0                            |
|        |                                              | RI           | 1125       | 0.75                                      |                           |                           |            | 0                            |
| 9      | DLS                                          | IE           | 1596       | 0.76                                      | 3.54                      | 3.538                     | Moderate   | 0.002                        |
|        |                                              | RI           | 735        | 0.49                                      |                           |                           |            | 0.056529112                  |
| 10     | DLS                                          | IE           | 1680       | 0.8                                       | 2.81                      | 2.813                     | High       | 0.003                        |
|        |                                              | RI           | 150        | 0.1                                       |                           |                           |            | 0.106647707                  |
| 11     | DLS                                          | IE           | 1575       | 0.75                                      | 4.97                      | 4.969                     | Very Low   | 0.001                        |
|        |                                              | RI           | 1230       | 0.82                                      |                           |                           |            | 0.020124774                  |
| 12     | DLS                                          | IE           | 1365       | 0.65                                      | 4.17                      | 4.17                      | Low        | 0                            |
|        |                                              | RI           | 1080       | 0.72                                      |                           |                           |            | 0                            |
| 13     | DLS                                          | IE           | 1428       | 0.68                                      | 3.58                      | 3.577                     | Moderate   | 0.003                        |
|        |                                              | RI           | 885        | 0.59                                      |                           |                           |            | 0.083869164                  |
| 14     | DLS                                          | IE           | 1995       | 0.95                                      | 5                         | 5                         | Very Low   | 0                            |
|        |                                              | RI           | 1050       | 0.7                                       |                           |                           |            | 0                            |
| 15     | DLS                                          | IE           | 273        | 0.13                                      | 1.7                       | 1.71                      | Very High  | 0.01                         |
|        |                                              | RI           | 675        | 0.45                                      |                           |                           |            | 0.584795322                  |
| 16     | DLS                                          | IE           | 714        | 0.34                                      | 1.39                      | 1.405                     | Very High  | 0.015                        |
|        |                                              | RI           | 345        | 0.23                                      |                           |                           |            | 1.067615658                  |
| 17     | DLS                                          | IE           | 525        | 0.25                                      | 1.85                      | 1.855                     | Very High  | 0.005                        |
|        |                                              | RI           | 675        | 0.45                                      |                           |                           |            | 0.269541779                  |
| 18     | DLS                                          | IE           | 1155       | 0.55                                      | 3.11                      | 3.114                     | Moderate   | 0.004                        |
|        |                                              | RI           | 855        | 0.57                                      |                           |                           |            | 0.128452152                  |
| 19     | DLS                                          | IE           | 1785       | 0.85                                      | 5                         | 5                         | Very Low   | 0                            |
|        |                                              | RI           | 1050       | 0.7                                       |                           |                           |            | 0                            |
| 20     | DLS                                          | IE           | 903        | 0.43                                      | 2.19                      | 2.195                     | High       | 0.005                        |
|        |                                              | RI           | 585        | 0.39                                      |                           |                           |            | 0.227790433                  |

The results obtained from Matlab fuzzy logic toolbox were compared with the results obtained from the FuzzyLite. The proponents computed the true error and the percent approximate error of crisp outputs for two metrologies. It was realized that the two output values were the same and the linguistic classifications were met, based from the specified range that was assigned by the proponents from Table 2.1. The 20 trials were

conducted to cater five linguistic classifications and the highest true error obtained was **0.015**. It could be analyzed that the highest obtained true error (highlighted in red) is negligible; it still fits same “Very High” linguistic classification. In general, Matlab Fuzzy Logic Toolbox and FuzzyLite are correlated with each other in terms of the desired linguistic classification that can be used in dimming lighting system.

## CONCLUSIONS

In this paper, the study showed that the fuzzy-based system for dimming lighting system is simple, reliable and effective. The novelty of this paper is the simulation and comparison of two handy fuzzy based programs. The obtained crisp outputs of two metrologies were compared to check the reliability of the system. The outputs were analogous with each other due to its similar rules and membership functions (constructed by the proponents). The results gathered by the proponents were credible and reliable, because regardless of the simulator used, the linguistic classifications will always be the same. The crisp outputs of the two simulators will only have bit or negligible difference. The paper presents a purely simulation model, which employs fuzzy logic for automatic classification of dimming lighting system. Both programs (Matlab fuzzy logic toolbox and FuzzyLite) provide accurate results that can be used on dimming lighting system. It could be concluded that both Matlab fuzzy logic toolbox and FuzzyLite can be used as an effective, handy

and powerful tool to simulate fuzzy logic algorithms.

[10] R. B Caldo, A. A Delos Santos, D.P Tardeo "Fuzzy Logic Derivation and Simulation of a Three-Variable Solar Water Heater Using Matlab Fuzzy Logic Toolbox," *Proceedings of the 6th International Conference Humanoid, Nanotechnology, Information Technology Communication and Control, Environment and Management (HNICEM) The Institute of Electrical and Electronics Engineers Inc. (IEEE) – Philippine Section 12-14 November 2013 Henry Sy Hall, De La Salle University, Manila, Philippines*

## REFERENCES

- [7] Shimon Y. Nof, "Springer Handbook of Automation", 2007
- [8] Craig DiLouie "Lighting Controls Handbook", 2009
- [9] A. Cziker, M. Chindris and A. Miron "Fuzzy Logic Controller for indoor lighting system with daylight contribution"